

Overview

- Pretest Nondestructive Evaluation (NDE)
 - External/Internal Visual Inspection
 - Raman Spectroscopy
 - Laser Shearography
 - Laser Profilometry
- Real-Time NDE
 - Eddy Current
 - Acoustic Emission (AE)
 - Real-time Portable Raman Spectroscopy
- AE Application to Carbon/Epoxy (C/Ep) COPVs

Pretest NDE Data Review

Slide 4

Pretest Health Assessment OMS S/N 007

- · Visual Inspection
 - External
 - · Generally clean
 - Matrix cracking, scuffs, loose fibers
 - · No significant mechanical damage observed
 - Internal
 - · Ripple imprints throughout
 - · Debris around bottom portion of vessel
 - · Minor stains and discolorations

Slide 10

Brief Analysis of Indications

Indications #2, #3, #4

Location: Band 3 @ 170° to 300°, 14 in. below AN-4 fitting, along the center of the equatorial circumferential Kevlar wrap

Size: #2 is 12 in. long, #3 is 9.5 in. long, and #4 is 9.0 in. long

Indications are variations in the Z axis displacement. The circumferential wrap should ideally provide uniformity around the equator. Shearography is detecting slight variations in the strength of this wrap.

Slide 14

Kevlar NDE Reference Standard Helped Quantify Defects

- · Manufactured "damage" built into standard
- Wound at OEM
- 18 in. diameter sphere
 - Kevlar-49 fiber thick-walled (24 layers-48 plys)
- Numerous types of damage inflicted during winding process
 - Cut fibers
 - Simulated delaminations

14

Type of Defects in Kevlar NDE Standard

- Fiber Cuts: 1 in. and 3 in. long cuts (1 and 2 layers deep = 2-4 plys)
- Individual Delaminations: Four sizes of heat-sealed 5 mil FEP Teflon® (1 x 1 in., 1 x 2 in., 1 x 3 in., and 1 x 4 in.)
- · Locations kept confidential

Typical Large Cut

Typical Delamination

15

OMS Kevlar Pretest NDE Conclusion

- With exception of the large ripples around the girth well, no indications were observed that were an issue with planned stress rupture testing
- Eddy current (EC) sensors were placed over the peak of each girth ripple and monitored during pressurization to verify the liner did not flex causing a metallic fatigue concern
 - Decrease of stand-off between the fixed composite surface and liner ripple would indicate a liner buckle and associated air pocket
 - Stand-off remained fixed during pressure cycles, signifying that the indications were not a concern

Slide 24

Eddy Current Testing to Address Buckling Question

- Three EC sensors (#1 3) were placed over the peak of the largest liner ripple indications, and one sensor (#4) was placed in the liner membrane region as a reference.
 - Response of Sensors #1 3 was in family with the membrane reference sensor, indicating ripples were not behaving as unstable "buckles" during pressurization
 - Stand-off change of 1 to 2 mils per 1000 psi was consistent with EC data obtained from other 40 in. Kevlar COPV testing

Slide 28

Slide 34

This is a view of all the AE events to date as seen from a top down view. Some event clusters appear near the equator. A few loose groupings near the poles

This is a view of all the AE events to date as seen from a top down view. Some event clusters appear near the equator. A few loose groupings near the poles

Slide 38

AE Summary

- There were two AE event rate increase periods that occurred during the last 7 days. The last rate increase ended in failure.
 - Over 3000 recorded events during the last 10 days
 - More than 300 very energetic events recorded during the last week
 - The rate increases were coincidental with trains of very large energy signal events.
 - The first rate increase for large energy signal events (24 to 96 hours before the end) was approximately 2/hour.
 - The second and final rate increase for large energy signal events (last 24 hours) was approximately 6/hour.
- · Event energies rose to very elevated levels during the last 96 hours.
 - High energy events were > 25 times greater than energetic events in the past.
 - The loudest events occurred at the end (last 24 hours).
 - The final event, which was the loudest, was located ~45° below the equator and near the azimuth angle of 45°.

AE Application to Carbon COPVs Looking to the Future

Conclusion

- NDE has proven highly effective in real-time characterization of COPVs during testing
- NDE is reasonably effective in evaluating the health of COPVs, but still more work is needed to make it more quantitative